Glial U87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing oxidative stress and apoptosis.

نویسندگان

  • Yasmeen Saeed
  • Bingjie Xie
  • Jin Xu
  • Abdur Rehman
  • Ma Hong
  • Qing Hong
  • Yulin Deng
چکیده

Recent studies have demonstrated the role of indirect effect of radiation in neurodegeneration. However, the role of glial cells in neuroprotection against indirect effect of radiation is still not clear, although they are known to protect neurons under stress conditions in central nervous system. Our study showed that indirect effect of radiation increased the oxidative stress that further enhances the expression of key apoptotic proteins and leads to neuronal cell death. We also investigated the indirect effect of radiation on neuronal cells in the presence of glial cells in a transwell co-culture system, while our analysis was focused on neuronal cells. Irradiated cell-conditioned medium (ICCM) was used as source of indirect radiation and neuroprotective effect was analyzed by various endpoints. It was observed that ICCM-induced reactive oxidative species level was significantly reduced in SH-SY5Y cells co-cultured with glial U87 cells, which might help to maintain the integrity of mitochondrial membrane potential. Increased levels of antioxidant enzyme superoxide dismutase and antioxidant glutathione were observed in SH-SY5Y cells co-cultured with glial U87 cells. Moreover, it was also observed that co-culture with glial cells inhibits the expression of ICCM-induced apoptotic proteins, i.e. Bax, cytochrome c, and caspase-3 in SH-SY5Y cells. Hence, it can be speculated that in co-culture system glial cells may protect the neuronal SH-SY5Y cells by reducing the ICCM-induced oxidative stress and apoptotic death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells

Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...

متن کامل

Neuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells

Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic ...

متن کامل

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells

Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced c...

متن کامل

Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)‑induced neuronal damage remains unclear. In the present study, pretreatment with lycopene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2015